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SUMMARY

Electrochemical Oxidation (ECO) offers promise as a low-temperature, atmos-

pheric pressure method for safe destruction of hazardous organic chemical wastes
in water. Anode materials tend to suffer severe corrosion in the intensely
oxidizing environment of the ECO cell. There is a need for cheaper, more resist-
ant materials. In this experiment, a system is described for testing anode
materials, with examples of several common anodes such as stainless steel,
graphite, and platinized titanium. The ECO system is simple and safe to operate
and the experiment can easily be expanded in scope to study the effects of
different solutions, temperatures, and organic materials.

INTRODUCTION

Prerequisite Knowledge Required

The basic experiment can be performed by any technically minded high school
student with elementary knowledge of electrical circuits and ionic conduction.
The expanded experiment (use of different anolyte solutions, addition of organic
"wastes", gas chromatography, etc.) should be performed only by students with a
good knowledge of inorganic chemistry and beginning organic chemistry, and an
ability to use instrumental methods of analysis. The experiment is based on
research being performed at the Pacific Northwest Laboratory to develop ECO as a
usable alternative to other waste disposal methods (ref. I-3).

OBJECTIVES

The objective of the experiment is to demonstrate that any system which is
capable of destroying waste materials in an oxidizing environment is itself
subject to corrosion, and to find a material which can survive this environment
for a long enough time to be commercially useful. Background information on this
topic can be found in (ref. 4). After performing the experiment, the student
should be encouraged to speculate on possible novel materials which might be more
suitable than the expensive platinized titanium (such as conducting plastics, for

instance).
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EQUIPMENT AND SUPPLIES

Basic Experiment

The necessary equipment comprises:

A power supply capable of providing up to 6 amps at up to 9 volts.
Two pumps capable of pumping up to 300 ml/min, of dilute acids or

alkalies.

An Electrochemical Cell (construction described below).

A sheet of selective anion-permeable membrane (e.g., Riapore 1035).

Anode and cathode electrodes made of stainless steel, graphite, and
a resistant metal such as platinum or platinized titanium.

Two graduated cylinders (capacity > 500 ml) with a liquid take-off
at the bottom (for electrolyte recycle).

Plastic tubing to interconnect the above.

A red and a black insulated wire to connect the power supply to the
ECO cell.

Expanded Experiment

In addition to the above, the apparatus (shown in Figure 1) can be set up for
measuring the effect of temperature, measurement of gases evolved from the anode

and cathode compartments, measurement of pH changes during the experiment, etc.
For this, additional equipment includes:

Two hot-plate stirrers to heat the solutions to <80°C.

Tubing take-off from the tops of the graduated cylinders to

inverted burettes to measure gas evolution rates.

A small metering pump for continuous addition of an organic

(water-soluble) solvent (in the Figure, the example given
is Hexone, or methyl isobutyl ketone).

Instrumentation as available: Gas chromatograph; pH meter; gas

flow meter; gas analyzer (Oxygen and carbon dioxide).

The effect of oxidation conditions on anode materials can be determined

visually, or measured with a micrometer gage.

For all experiments, the experimenter has a choice of electrolytes:
acid (e.g., nitric or sulfuric, about 0.5 - I M), an alkali (e.g., sodium

hydroxide, i M), or a salt solution to ensure good ionic conduction.

A dilute

Cell Construction

ECO cells are available commercially but can be constructed easily for

teaching purposes with the facilities of a small workshop. A cell comprises an
approximately 7 x 7 cm area. An exploded view of a commercial cell is shown in

Figure 2. It is made from laminated teflon sheets, ca. 3 mm thick. Stainless

steel end-plates are used to bolt the whole assembly together (4 bolts, one at
each corner) tightly enough to prevent leaks. Each electrode plate is held

between two plastic plates, with holes drilled at the corners to permit
electrolyte flow on both sides of the electrode. The ionic membrane which

separates the anode an-'n3-cathodecompartments is held between two sheets of rigid
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plastic mesh (somepressure develops within the cell due to osmotic forces).
Polypropylene maybe used instead of teflon for most purposes, but will not last
as long in use. Similarly, connecting tubes between the cell and the pumpsand
electrolyte reservoirs should preferably be madeof teflon, but polypropylene can
be substituted. Any design of cell can be used in this experiment, including
wires suspendedin liquid. Twoessential features of any cell used for this

experiment are (a) the ionic membrane used to separate the cathode and anode
compartments, and (b) recycled electrolytes, or a way of removing gas generated in
the cell.

PROCEDURE

An electrochemical flow cell is set up as shown in Figure 1. The flow cell
is fitted with a stainless-steel cathode. The anode is made of (a) stainless

steel, (b) graphite, or (c) platinum or platinum on titanium. A Riapore 1035

anionic membrane separates the anode and cathode compartments. 2 The anode and
cathode each have an available electrode surface area of 20 cm . The anolytes

used in the experiment are generally N NaOH or N nitric acid (total volume of

300 - 500 ml). The catholyte has the same material (acid or alkali), concentra-

tion and total volume as the anolyte. If an above room temperature experiment is

to be performed, the catholyte and the anolyte are heated and stirred. Burettes

inverted over water can be used (optional) to measure gas evolution. Flow of

anolyte and catholyte through the cell is started by turning on the two Teflon

pumps (Saturn model SP 2000 with Minarik motor controllers). Direct current power

is supplied by a Hewlett-Packard model 6281A DC power supply with a maximum

capacity of 6 A. Teflon tubing is used to connect all of the system components

and Galtek sample valves are used to take samples during system operation.

In a typical experimental run, 500 ml each of anolyte and catholyte are added

to the cleaned and leak-checked system. The circulating pumps, heaters, and
stirrers are turned on, and the system brought to the desired temperature (this

step is omitted for room-temperature experiments). The power supply is then

turned on and adjusted to provide 6 A to the cell; the time, voltage, and amperage
are noted on the data sheet. The student will note the behavior of the cell, such

as visible color changes in the recirculating solutions, which would indicate
corrosion of the electrodes. If desired, this can be followed by a simple wet

chemistry test or colorimetric measurement for iron (from stainless steel), or

carbon dioxide production rate can be monitored to follow the dissolution of a

graphite anode.

The experiment can be terminated at any time, preferably after 4-8 hr, and

the cell disassembled carefully and cleaned. The degree of corrosion of the
electrode can then be determined by direct measurement. As a rule of thumb, a

stainless steel anode will show signs of corrosion within I hr, from the

appearance of a brown insoluble suspension in the anolyte solution; graphite will

be completely eaten through in about 6 hr; and platinized titanium will show no

effect. Depending on the amount of laboratory time available, each electrode
could be subjected to the oxidation conditions in a single experiment (with

reassembly of the cell each time), or a single material can be examined in a day.
The rate of corrosion can also be adjusted by varying the current through the

cell, to suit the instructors convenience.
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If an actual organic "waste" degradation is to be performed as well as a

measurement of electrode corrosion, a suitable water-soluble compound can be added
at a 1-2% concentration before the power is turned on (for safety reasons, to

avoid a possible fire if-Teak-age of pure solvent should occur). The anolyte

solution is then recirculated for 5 min to mix the organic compound in completely.

Hexone (Sml), acetone, diglyme, methanol, or any common solvent can be used. For

safety reasons, flammable solvent additions should be monitored or performed by
the instructor. Continuous addition can also be performed via a metering pump (as

shown in Figure 1). Figures 3 and 4 show typical results of addition and

oxidation of common organic substances in the cell.

SAMPLE DATA SHEETS

An example of the data obtained from a typical experiment is shown in Figure

5. The experiment included addition of hexone, and use of a Pt/Ti anode. In this

experiment, the anode was inert. Data on the rate of organic destruction is shown

in Figure 6.

INSTRUCTOR NOTES

The electrochemical oxidation experiment is widely adaptable in terms of

materials studies (corrosion and chemistry), can be adjusted as to time required

by simply varying the voltage across the cell, and is simple and safe to perform.

Chemicals used are generally dilute acids and alkalies and are relatively

nontoxic. Of course, safety glasses should be worn throughout or the experiment

performed in a fume hood.

A battery can be substituted for the power supply. Tubing can be either

teflon, as recommended, or a cheaper substitute plastic. Obviously, metal tubing

will not work. If pumps are not available, a single pass-through, gravity feed of

electrolyte can be used.

The electrochemical cell itself could be made in an engineering workshop

class, from teflon or polypropylene sheet and stainless steel (for the end

plates).

There is unfortunately no real substitute for the ion-permeable membrane or

for using some form of platinum as a permanent (non-corrodible) anode. One
exercise for the student could be to suggest and perhaps test a potential

replacement!

Theory

A simplified theory of electrochemical oxidation is as follows: A hydroxyl

ion gives up an electron at the anode, generating a hydroxyl radical (HO.), which

can either undergo the normal water electrolysis reaction to form oxygen gas, or

can react with an organic compound to hydroxylate it. Enough hydroxylations and

even the most resistant organic compound will fall apart to form, eventually,
carbon dioxide and water. Of course, hydroxyl radical can also attack the anode

and convert a metal into its hydroxide.
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Hazards

The experiment itself is remarkably hazard-free. The major problems in

practice have been liquid spills of acid, alkali, or solvent, and consequent

damage to clothing. Cell leakage has occasionally occurred when an anode plate

became perforated and eaten away through the side of the cell. This spillage and

leakage problem can be solved by placing a glass oven dish underneath the

apparatus to catch spills. Cathode and anode gases should never be mixed, as
water electrolysis is a side-reaction and this generates hydrogen (cathode) and

oxygen (anode) in explosive proportions. Therefore, the evolved gases should be

vented and not allowed near a spark. The pumps and power supply are located

outside the hood or remote from the cell for this reason. No smoking should be

allowed near the apparatus.

Clean-Up

After the experiment has been completed, power to the cell should be turned

off. The electrolytes can then be pumped out, neutralized, and disposed of down

the sink (neutralization is necessary to comply with environmental regulations).

Used anode materials are non-leachable and can be disposed of directly into the

garbage (i.e., graphite, steel, etc.). The cell should be disassembled and

thoroughly cleaned after each use: Water is usually sufficient, but acetone or

methanol may have to be used to remove iron oxides.

Future Applications

The purpose of this experiment is to expose the student to a developing

technology that may one day be of great use for hazardous waste destruction.

Electrochemical oxidation is far milder and easier to control than incineration,

for example, but it suffers from problems of electrode corrosion. Other problems

hampering the wider application of the technology are the fact that the organic

waste oxidation takes place only on or near the anode, where hydroxyl (OH.)
radicals are generated. Hence a large anode area and/or a high flow rate past the

anode are needed. Also, many wastes contain insoluble organics and sludges. Ways

to circumvent these problems are needed. In this experiment, the approach is to

examine existing engineering materials in the electrochemical oxidation environ-

ment and to show that they are either inadequate or too expensive for widespread

use. This should encourage the student to suggest alternatives and to start

thinking about the problem. Possible topics for discussion are plastic-based
conductors and channelized anodes.
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SOURCES OF SUPPLIES

All chemicals required for this experiment are available from most chemical

suppliers (e.g., nitric acid, sodium hydroxide, solvents). The rarer electrode

materials (platinum on titanium, graphite, nickel, etc.), and the Riapore 1035

ion-permeable membrane can be obtained, for example, from The Electro-Synthesis

Co., Inc., P.O. Box 16, E. Amherst, N.Y. 14051. (No endorsement of this

particular company is implied; other suppliers may prove equally suitable.) The
electrochemical cell can be purchased from this or other supplier of electro-

chemical equipment, or made in the workshop. Prices are widely variable.
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Figure 2: Exploded View of Electrochemical Cell
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Figure 3:
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Figure 4:
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DESTI_UCTIDNDATA _NN.YSIS:

Qms Chromatograph Standard

% hexone (;C counts slope intercept

1 3566000 2.821E-07 -0.0059"E38

O. 1 375,500

Hexone

Increment Destruction

Date --) June 4, 87 Hexone ges Hexone gas Hexone gms Hexone Rate

Elap. Min. Time Interval I;CCounts Remaining Destroged Destroyed gss/hr Amps Volts

-0 11:16 3290000 5.00 6 4.9

30 11:46 30.0 2546000 3.B7 1.13 1.13 2.2614 6 4.9

60 12:16 30.0 1862000 2. B3 2.17 1.04 2. 0790 6 4.8

90 12:46 30.0 1515000 2.30 2.70 0.53 1.0547 6 4.9

180 14:16 90.0 390800 0.59 4.41 1.71 1.1390 6 4.9

210 14:46 30.0 11L_300 0.17 4.83 0.42 0.8450 6 5

240 15:16 30.0 23490 0.04 4.96 0.14 0.2715 6 5

Hexone

Increment Destruction

June 5, 87 Hexone gms Hexone ges Hexone ges Hexone Rate

EIaLp.Min. Time IntervLl (;CCounts Remaining Destroyed Destroyed gmslhr Amps Volts

0 10 : 15 52213000 5. O0 6 4.2

32 10:47 32.0 3870000 3.70 1.30 1.30 2.4352 6 4.2

90 11:4:5 58.0 1731000 1.66 3.34 2.05 2.1163 6 4.3

154 12:49 64.0 90,5800 0.B7 4.13 0.79 0.7399 6 4.4

203 13:38 49.0 293000 0.28 4.72 0.59 0.7176 6 4.5

269 14:44 66.0 33960 0.03 4.97 0.25 O.;W_2 6 4.5

Figure 6: Example Data Presentation for Diglyme and Quinoline Oxidation
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